Government General Degree College, Chapra

Internal Assessment- 1st Semester, 2019-20 Sub.- Physics Paper: MATHEMATICAL PHYSICS-I

Total Marks: 15

Time: 40 minutes

Answer any three questions only:

1.	(a) Solve the differential equation $(x + 1)\frac{dy}{dx} - y = e^x (x + 1)^2$.	3
	(b) Find the Taylor series expansion of lnx about $x = 2$.	2
2.	Solve the equation – y'' + 6y' + 8y = 0, subject to the condition $y = 1$, $y' = 0$ at $x = 0$,	
	where, $y' = \frac{dy}{dx}$ and $y'' = \frac{d^2y}{dx^2}$.	5
c	(a) Find a unit vector normal to $\vec{A} = 2\hat{i} + 4\hat{i} = E\hat{k}$ and $\vec{P} = \hat{i} + 2\hat{i} + 2\hat{k}$	C

- 3. (a) Find a unit vector normal to $\vec{A} = 2\hat{\imath} + 4\hat{\jmath} 5\hat{k}$ and $\vec{B} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. 2 (b) Using Stoke's law, prove that $\vec{\nabla} \times \vec{\nabla} \phi = 0$. 3
- 4. (a) The position vectors of three points A, B and C are r₁ = î + 2ĵ + k̂, r₂ = 3î + 2ĵ 3k̂ and r₃ = 2î + 2ĵ 3k̂. Find the area of the triangle.
 (b) w̃ is a constant vector and r̃ is the position vector of a point. If ṽ = w̃ × r̃, then prove that V̄. ṽ = 0.